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A. Rolling-window regressions and choice of the window size

For the Fama regression estimated using RW, a window size must be chosen. Using similar

dataset, RW-Fama regression coefficients from Ismailov and Rossi (2018) and Engel et al. (2022)

show different patterns and thus lead to different conclusions. Figure 1 and 2 are taken from

the two studies directly. Of interest is the UIP relation between US dollar and British pounds,

the slope coefficient in particular. The scales of the y-axes are different due to different variable

scaling used in the two studies. As Ismailov and Rossi (2018) use a shorter time period, the

corresponding sample period for the results in Engel et al. (2022) is indicated by a black box.

Both studies suggest an increasing trend in βt prior to 2009. Major difference happens after

the GFC. Ismailov and Rossi (2018) find that the increase continues, whereas Engel et al. (2022)

document a nosedive. Consequently, the former would suggest a persistent violation of UIP,

but the latter apparently points to the very opposite.

Two possibilities are behind this conflicting result: (1) RW regressions are not robust to

different forms of parameter instability; (2) RW regressions are not robust to different choices

of window size. To address the first possibility, we use the SCL method of Giraitis et al. (2014)

and Petrova (2019). This method has been theoretically and empirically shown to be robust to

various forms of parameter evolution: structural breaks, gradual changes, and jumps. But, it

involves a bandwidth tuning parameter that essentially serves as the same role of window size.

Using our dataset, which is the same as Ismailov and Rossi, 2018, we estimate the Fama

regression using the SCL method but under two different bandwidths. The left and the right

panels of Figure 3 largely replicate the results from Ismailov and Rossi (2018) and Engel et al.

(2022), respectively.

It is unclear how one can make a consistent conclusion about the UIP relation around 2010

according to the two estimates. As the SCL approach rules out the aforementioned first pos-

sibility, the conflicting results are mostly attributable to the ad-hoc choice of the window size

(or bandwidth in SCL). An estimation scheme such as the TVP-SV-Fama regression proposed

in the main text that does not depend on any tuning parameter seems more suitable for inves-
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Figure 1: Slope coefficient of the Fama regression estimated by Ismailov and Rossi (2018). The

Fama regression st+1 − st = α+ β̃(it − i∗t ) + ϵt is estimated by RW.

Figure 2: Slope coefficient of the Fama regression estimated by Engel et al. (2022). The Fama

regression st+1 − st = α+ β̃(it − i∗t ) + ϵt (Equation (2) in the main text) is estimated by RW. Black

box indicates the sample period between 1999 and 2010.
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Figure 3: Slope coefficient of the Fama regression estimated by the SCL method. The left and

the right panel shows estimates using two different bandwidths.

tigating time-variation in UIP coefficients.

B. Derivation of observation weights

Conditional on σ, e.g. an MCMC draw or a posterior estimate, Kalman filter and smoother

can be used to compute the observation weights of the TVP-SV-Fama regression model (??),

with respect to the UIP coefficient βt. For simplicity, we assume αt = 0 for all t, which is in

line with our empirical results. The model becomes

ρt+1

i∗t − it
= βt +

σt

i∗t − it
ϵt,

βt+1 = βt + σβηβ,t.

Suppose the system were time-invariant with error variance σ2
ϵ . Kalman filter outputs reach

their steady state quickly (Durbin and Koopman, 2012, Chapter 4). Let at and Pt denote the

filtering expectation E(βt|{ρs+1, i
∗
s−is}t−1

s=1) and variance Var(βt|{ρs+1, i
∗
s−is}t−1

s=1), respectively.

The Kalman filter iterates forward over

at+1 = at +
Pt

Pt + σ2
ϵ

(
ρt+1

i∗t − it
− at

)
, Pt+1 =

Ptσ
2
ϵ

Pt + σ2
ϵ

+ σ2
β.
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The steady state is given by the fixed-point solution to the second equation, and it is P̄ =

(q +
√
q2 + 4q)/2 where q = σ2

β/σ
2
ϵ is the signal-to-noise ratio. Let bt denote the smoothed

expectation E(βt|{ρs+1, i
∗
s − is}Ts=1). The Kalman smoother iterates backward from rT = 0 and

Var(rt) = Nt over

rt−1 =
ρt+1/(i

∗
t − it)− at

Pt + σ2
ϵ

+
σ2
ϵ

Pt + σ2
ϵ

rt, bt = at + Ptrt−1, Nt−1 =
1

Pt + σ2
ϵ

+

(
σ2
ϵ

Pt + σ2
ϵ

)2

Nt.

Because σ2
ϵ

Pt+σ2
ϵ
< 1, the steady state of Nt exists and equals to N̄ = (P̄ + σ2

ϵ )/(P̄
2 + 2P̄ σ2

ϵ ).

Suppose we can write bt =
∑T

j=1 ωjt[ρj+1/(i
∗
j − ij)] with weight ωjt associated with the j-th

observation corresponding to t-th smoothed estimate. Then we have E(btϵj) = ωjtE([ρj+1/(i
∗
j−

ij)]ϵj) = ωjt, but also

E(btϵj) =

{
−Cov(ϵj − E(ϵj|{ρs+1, i

∗
s − is}Ts=1), βt − bt), for j < t;

−Cov(βt − bt, ϵj − E(ϵj|{ρs+1, i
∗
s − is}Ts=1)), for j ≥ t.

After minor algebraic manipulation, the steady state gives for j < t

Cov(ϵj −E(ϵj|{ρs+1, i
∗
s− is}Ts=1), βt− bt) = E(ϵj(βt− bt)) = − P̄

P̄ + σ2
ϵ

(
σ2
ϵ

P̄ + σ2
ϵ

)t−j
P̄ σ2

ϵ

P̄ 2 + 2P̄ σ2
ϵ

.

Similarly, for j ≥ t we have

Cov(βt − bt, ϵj − E(ϵj|{ρs+1, i
∗
s − is}Ts=1)) = − P̄

P̄ + σ2
ϵ

(
σ2
ϵ

P̄ + σ2
ϵ

)j−t
P̄ σ2

ϵ

P̄ 2 + 2P̄ σ2
ϵ

.

Therefore, as j moves away from t, observation ρj+1/(i
∗
j − ij) receives exponentially declining

weight proportional to

ωjt ∝
(

σ2
ϵ

P̄ + σ2
ϵ

)|t−j|

=

 2σ4
ϵ

σ2
β +

√
σ4
β + 4σ2

βσ
2
ϵ + 2σ4

ϵ

|t−j|

.

When SV is present, the first-order approximation of the weighting function can be computed
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Figure 4: Weighting functions implied by the TVP-SVX-Fama regression model. The left, middle

and right figure show the effect of volatility σt, interest rate differential i∗t − it, and cross-sectional

correlation in xt on ωjt for j = 1, ..., 19 and t = 10.

by replacing σ2
ϵ with σ2

t /(i
∗
t − it)

2.1 So if σt increases or the interest rate differential i∗t − it

decreases, ωjt becomes larger. This means that during volatile times, the estimation of the

slope βt relies on more backward and forward information, and vice versa.

In section 4.3 of the main text, we conduct a robustness check where the state dynamics

is augmented with regression effects from US economic shocks. In this case, σ2
β in the above

observation weight is replaced by σ2
β + γ′

βxtx
′
tγβ, meaning that the signal-to-noise ratio, and

thus the weight, is also affected by the variation of shocks. In Figure 4, we plot the weighting

function for estimating β10 with T = 19 under increasing volatility, changing interest rate

differential and changing cross-sectional dependence in xt.

In sum, the data-driven feature of the model considers more observations when estimating

βt if the signal-to-noise ratio is low. In particular, remote observations (i.e. j is away from t)

becomes more important if period t is associated with (1) high uncertainty or volatility; (2)

small interest rate gap; (3) low variation in non-US shocks; and (4) low variation in US shocks.

This is intuitive because low signal-to-noise ratio leads to estimation uncertainty, which should

be mitigated by using more observations.

1Derivations of filtering weights for a simpler local level model with SV can be found in Shephard (2015).
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C. Additional empirical results

C.1. Break date determination via marginal data likelihood

In section 4.1, we estimate the SV-Fama model with a break in the slope coefficient. To

determine the break data, we consider a sequence of models, with each defined by a break data.

Suppose the i-th model indicates the model with a structural break in slope occuring at time

10 + i, i = 1, ..., T − 21. We then compute the marginal data likelihood for all T − 21 models

via

p(ρ|X i) =

∫
p(ρ|X i,θ)p0(θ)dθ ≈ 1

J

J∑
j=1

p(ρ|X i,θ
(j)),

where θ(j), j = 1, ..., J , is a draw from p0(θ), the prior distribution of the vector of static

parameters θ. This means the middle term in the above is the integrated likelihood, and

the right term is an unbiased estimate of it. X i is a T × 3 design matrix with the t-th row

(1, i∗t − it, 0) if t < i and (1, i∗t − it, i
∗
t − it) if t ≥ i. We can partition θ = (β′, vh)

′, where β

is the 3 × 1 vector of regression coefficients (i.e. the pre-break slope is β2 and the post-break

slope is β2 + β3), and vh is the innovation variance of the random walk log variance ht = log σ2
t

in the SV-Fama regression.

Drawing from the prior is trivial. We focus on the evaluation of p(ρ|X i,θ
(j)), which is an

integrated conditional likelihood:

p(ρ|X i,θ
(j)) =

∫
p(ρ|X i,h,θ

(j))p(h)dh, (1)

where h = (h1, ..., hT )
′. In the above, the right term involves high-dimensional integration,

and thus cannot be evaluated by Monte Carlo integration feasibly. One can use a particle

filter to integrate out the SV sequentially (Chib et al., 2002). Considering the sheer number of

model evaluations, we adopt the numerically accelerated importance sampling (NAIS) method

developed by Koopman et al. (2015) and Li and Koopman (2021). NAIS is specifically designed

for SV models and performs way faster than popular sequential Monte Carlo methods.
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For each j, X i and θ(j) are fixed, so we suppress the dependence and denote ϵ = ρ−X iβ.

It follows from (1) that p(ρ) = p(ϵ) and

p(ϵ) = g(ϵ)

∫
p(ϵ|h)p(h)
g(ϵ|h)g(h)

g(h|ϵ)dh ≈ g(ϵ)
1

K

K∑
k=1

ω(k), (2)

where g(.) is the density implied by an importance model which enables evaluation of g(ϵ) and

drawing h(k), k = 1, ..., K, from g(h|ϵ) to easily construct the unbiased estimate expressed by

the importance weights ω(k). The importance model is chosen to be linear and Gaussian

bt
ct

= ht + ηt, ηt ∼ N

(
0,

1

ct

)
,

ht = ht−1 +
√
vhϵh,t, ϵh,t ∼ N(0, 1),

(3)

where (bt, ct), t = 1, ..., T , are importance parameters to be determined and implicit functions

of data. In the above, the state transition is identical to the SV-Fama regression model, so

p(h) = g(h) and the importance weight is given by

ω(k) =
p(ϵ|h(k))p(h(k))

g(ϵ|h(k))g(p(k))
=

T∏
t=1

p(ϵt|h(k)
t )

g(ϵt|h(k)
t )

,

where p(ϵt|h(k)
t ) ∼ N(0, exp(h

(k)
t )) given by the SV-Fama model, and it is easy to show that

g(ϵt|h(k)
t ) = g(bt/ct|h(k)

t ) ∼ N(h
(k)
t , 1/ct) such that

log g(ϵt|ht) = at + btht −
1

2
h2
t ct,

where the constant at = −1
2
(log 2π − log ct + b2t ct) does not dependent on ht. That (bt, ct)

enters log g(ϵt|ht) linearly means that the optimal importance parameters can be found in a

least squares problem:

(bt, ct)
new = argmin

b,c

S∑
s=1

(
log p(ϵt|h(s)

t )− a− h
(s)
t b+

1

2
(h

(s)
t )2c

)2

,
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where (1, h
(s)
t ,−(h

(s)
t )2/2)′, is the vector of regressors. With s = 1, ..., S, they form a set of

“data”. One can draw h
(s)
t from g(h|ϵ) implied by the importance model (3) under (bt, ct)

old,

t = 1, ..., T . But NAIS method makes this process simulation free, by using Gauss-Hermite

quadrature. This means we simply set h
(s)
t = Eg(ht|ϵ) +

√
Varg(ht|ϵ)zs, where Eg(ht|ϵ) and

Varg(ht|ϵ) are smoothed mean and variance under the importance model (3) which are easily

obtained by Kalman smoother, or even more efficiently by the precision sampler of Chan and

Jeliazkov (2009), and where zs is one of the 10 Gauss-Hermite nodes associated with weight qs.

This leads to a weighted least square problem:

(bt, ct)
new = argmin

b,c

10∑
s=1

qs

(
log p(ϵt|h(s)

t )− a− h
(s)
t b+

1

2
(h

(s)
t )2c

)2

,

After finding the optimal importance parameters, g(ϵ) can be computed from Kalman filter

applied to (3), or even more efficiently from the precision sampler of Chan and Jeliazkov (2009).

This gives us all ingredients for computing the integrated likelihood (2). NAIS method requires

more coding effort than particle filtering, but is much more efficient and accurate for SV models

(Li and Koopman, 2021). Its speed turns out to be instrumental for break date determination

which involves otherwise a prohibitively large number of model evaluations. In our exercise,

we choose J = 10, 000 (i.e. 10K draws of static parameters are made from its prior) for each

possible break dates, totaling 2.82 × 106 marginal likelihood evaluations. For each currency

pair, it takes around 8 minutes on a personal laptop without parallelization.

Figure 5 shows the marginal data likelihood for the SV-Fama regression with a break in the

slope, at each possible break date and for all currency pairs. The break data is chosen to be

the one that maximizes the data likelihood.

C.2. More on mixing properties

As a monotonic transformation of the inefficiency factor used in the main text, Table 1 presents

the effective sample size computed by the method given in Roy (2020), divided by 5,000. When

computing, we use Bartlett weights. Exponential weights generate similar results.
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Figure 5: Marginal data likelihood of the SV-Fama regression model. Each possible break date

gives a model which is evaluated via the marginal data likelihood. Candidate break dates cover 1995

- 2016. Red indicates the date that corresponds to the highest data likelihood, pinning down the

break date.

Table 1: Effective sample size of TVP-SV-Fama model parameters

NO CA JP DK CH UK

vα 3.26 1.73 2.01 1.04 1.67 1.35
vβ 1.85 1.70 2.22 1.16 1.41 0.76
vlog σ2 0.82 1.06 0.81 0.68 0.65 0.63
{αt} 1.5 - 4.6 2.3 - 4.8 1.3 - 2.4 1.1 - 6.3 0.8 - 4.3 1.4 - 3.4
{βt} 0.8 - 2.7 0.9 - 3.0 0.8 - 3.2 0.9 - 1.9 1.2 - 3.8 0.6 - 1.8
{log σ2

t } 0.4 - 0.9 0.4 - 1.0 0.3 - 5.0 0.4 - 1.4 0.3 - 0.6 0.5 - 0.8

The table summarizes effective sample size of the TVP-SV-Fama model parameters, divided by 5,000. For

TVPs, the minimum and the maximum of effective sample sizes across all t are reported. Results are based

on every 5-th draw from the 50,000 MCMC samples after the burn-in period.
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Figure 6: Posterior trace and autocorrelation function. The blue lines associated with the left y-

axis indicate the scaled MCMC sample paths for the three variance parameters. The red curves

associated with the right y-axis and x-axis ticks divided by 200 show the first 50 autocorrelation

functions.

Among all model parameters, the smallest effective sample size is 1,366, sufficiently large for

computing posterior statistics reported in the main text. To complement the results on the

total absolute autocorrelation function in the main text, Figure 6 reports the posterior traces

of the variance parameters and the associated first 50 autocorrelation functions for each of the

variances. Convergence is clearly achieved with satisfactory mixing.

C.3. Intercept coefficients from the TVP-SVX-Fama model

Figures 7 shows estimated regression coefficients γα (rescaled for readability) and summarize

which economic shocks affect αt and by how much. Comparing the the effects on βt reported

in the main text, we see more heterogeneous effects across shocks, with investment and wage
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Figure 7: Effects of US shocks on time-varying intercept. Reported are estimates of 100× γα of the

TVP-SVX-Fama regression for six currency pairs. Each coefficient in γα measures the responsiveness

of αt to a US shock, whose range, 0.05, 0.5, and 0.95 posterior quantiles are indicated by the vertical

bar, the lowest, the middle, and the highest circle, respectively. Red diamonds indicate shocks that

are not selected by Bayesian Lasso.

shocks as leading examples. This suggests that structural shocks affect excess returns mostly

via the covariance between expected depreciation and interest rate differentials.

D. Model sampling details

D.1. Sampling interest rate parity coefficients

The TVP-SV-Fama model (8)-(9) in the main text gives the conditional likelihood

p(δ|ρ,D,σ) ∝ |Σ|−
1
2 exp

(
−1

2
(ρ−Zδ)′Σ−1(ρ−Zδ)

)
.

The state equation (9) in the main text implies a joint prior for α and β via

δ|θ ∼ N
(
µ, (H ′Ω−1H)−1

)
,

where µ = 0, H is a sparse lower-triangular band matrix with ones on its main diagonal

and minus ones on its second lower diagonal, and Ω = diag(106, 106, vα, vβ, ..., vα, vβ). So, the
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conditional prior is given by

p0(δ|θ) ∝ |H ′Ω−1H|
1
2 exp

(
−1

2
(δ − µ)′H ′Ω−1H(δ − µ)

)
.

Combining the above with p(δ|ρ,D,σ), we obtain the conditional posterior given in the main

text.

D.2. Sampling of the TVP-SVX-Fama regression model

Let f = (f1, ..., fT )
′ and X = (x1, ...,xT )

′. Given the conditional likelihood H̃f |X,γf , vf ∼

N(Xγ, vfIT ) where IT is a T × T identify matrix, it can be shown that

γf |f , vf , τ 21 , ..., τ 2J ∼ N(γ̂f , vfΣ̂
−1

γf
),

where γ̂f = Σ̂
−1

γf
X ′H̃f and Σ̂γf

= X ′X +Γ−1. Combining the conditional likelihood and the

improper prior p0(vf ) = 1/vf , the conditional posterior for the innovation variance satisfies

vf ∼ IG

(
T − 1

2
+

J

2
,
(H̄f −Xγf )

′(H̄f −Xγf )

2
+

γ ′
fΓ

−1γf

2

)
.

Combining the conditional likelihood p0(γf |vf , τ 21 , ..., τ 2J ) ∼ N(0, vfΓ) and the exponential prior

p0(τ
2
j ) ∼ Exp(λ/2), we obtain the conditional posterior of 1/τj, j = 1, ..., J , given by

p(1/τj|γf , vf ) ∝
√
λτ

3/2
j exp

(
−
λτj(1/τj −

√
µ)2

2µ2

)
,

which is the kernel of the inverse-Gaussian density with parameter µ =
√

λvf/γf,j and λ. We

use the algorithm in Eisenstat et al. (2016) to sample from the inverse-Gaussian distribution.
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E. Extended model

We consider a TVP-SVX-in-mean model, similar to the SV-in-mean model developed in Sarantis

(2006) and Chan (2017). The model is given by

ρt+1 = αt + βt(i
∗
t − it) + δt exp(ht) + exp

(
ht

2

)
ϵt, (4)

and αt, βt and δt are TVPs that follow autoregressive distributed lag dynamics driven by their

own past, innovations, and a set of US structural shocks; that is

ft = µf (1− ϕf ) + ϕfft−1 + x′
tγ + ηf,t, f = {α, β, h}

In this formulation, ht is the time-varying log variance of Fama regression error term. δt captures

the time-varying feedback effect from the risk premium received from forward speculation. As

a robustness check, we consider autoregressive dynamics, rather than a random walk, for state

variables.

Figure 8 shows the estimated time-varying intercept in the extended model (4) for the US-

CA pair, in comparison to that in the TVP-SVX model. With autoregressive dynamisc, the

TVP-SVX-Fama estimate of αt and σt = exp(ht/2) follow closely with those given in the main

text. This means that our resutls are robust to different specifications of state transition.

Comparing the intercept obtained from the SV-in-mean model, we see a clear difference

between αt’s from two models. The intercept from the extended model shows a lower degree of

time variation. In fact, its 90% credible band covers 0, the theoretical value of the intercept.

This result is also obtained by Sarantis (2006) where the author uses a traded volatility index

instead of model-implied volatility. The muted variation in αt prompts one to consider two

possibilities: (1) temporal variation in αt is dominated by that of δt exp(ht), as an additive

term in (4), or (2) the TVP-SVX model is incorrectly specified.

As can be seen from Figure 8, the evolution of δt has low persistence while fluctuating around

zero – an overfitting sign that δt captures noise rather than a signal in the dynamics of the
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Figure 8: Estimates of time-varying coefficients for Canada under the extended model (4).

exchange rate. Interestingly, when we consider the intercept term in the extended model as

αt + δt exp(ht), we observe similarity between the two models as shown in the top-right panel

of the figure. Notice that this result does not conflict with δt is largely around zero. Because

the median of δt exp(ht) does not equal to median(δt) exp (median(ht)), due to the nonlinearity

of the product function.

The similarity between the estimate of αt + δt exp(ht) from the extended model and αt from

the TVP-SVX model leads us to conclude that the TVP-SVX can capture the effect of risk

premium on deviations from UIP in a similar way as the more involved extended model (4).

This is to a large extent expected because of the inclusion of US structural shocks in the

dynamics of αt in the TVP-SVX model which span a space that covers the unobserved risk

premium. Estimation results from other currency pairs robustly give us the same conclusion.

Therefore, we prefer TVP-SVX model over the extended model due to its simpler form and

estimation.
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