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A. Rolling-window regressions and choice of the window size

For the Fama regression estimated using RW, a window size must be chosen. Using similar
dataset, RW-Fama regression coefficients from Ismailov and Rossi (2018) and Engel et al. (2022)
show different patterns and thus lead to different conclusions. Figure 1 and 2 are taken from
the two studies directly. Of interest is the UIP relation between US dollar and British pounds,
the slope coefficient in particular. The scales of the y-axes are different due to different variable
scaling used in the two studies. As Ismailov and Rossi (2018) use a shorter time period, the
corresponding sample period for the results in Engel et al. (2022) is indicated by a black box.

Both studies suggest an increasing trend in S; prior to 2009. Major difference happens after
the GFC. Ismailov and Rossi (2018) find that the increase continues, whereas Engel et al. (2022)
document a nosedive. Consequently, the former would suggest a persistent violation of UIP,
but the latter apparently points to the very opposite.

Two possibilities are behind this conflicting result: (1) RW regressions are not robust to
different forms of parameter instability; (2) RW regressions are not robust to different choices
of window size. To address the first possibility, we use the SCL method of Giraitis et al. (2014)
and Petrova (2019). This method has been theoretically and empirically shown to be robust to
various forms of parameter evolution: structural breaks, gradual changes, and jumps. But, it
involves a bandwidth tuning parameter that essentially serves as the same role of window size.

Using our dataset, which is the same as Ismailov and Rossi, 2018, we estimate the Fama
regression using the SCL method but under two different bandwidths. The left and the right
panels of Figure 3 largely replicate the results from Ismailov and Rossi (2018) and Engel et al.
(2022), respectively.

It is unclear how one can make a consistent conclusion about the UIP relation around 2010
according to the two estimates. As the SCL approach rules out the aforementioned first pos-
sibility, the conflicting results are mostly attributable to the ad-hoc choice of the window size
(or bandwidth in SCL). An estimation scheme such as the TVP-SV-Fama regression proposed

in the main text that does not depend on any tuning parameter seems more suitable for inves-
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Figure 1: Slope coefficient of the Fama regression estimated by Ismailov and Rossi (2018). The
Fama regression s; 11 — sy = a + 3(2,5 —4¥) + € is estimated by RW.
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Figure 2: Slope coefficient of the Fama regression estimated by Engel et al. (2022). The Fama
regression s;11 — ¢ = o+ B(zt —if) + & (Equation (2) in the main text) is estimated by RW. Black
box indicates the sample period between 1999 and 2010.
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Figure 3: Slope coefficient of the Fama regression estimated by the SCL method. The left and

the right panel shows estimates using two different bandwidths.

tigating time-variation in UIP coefficients.

B. Derivation of observation weights

Conditional on o, e.g. an MCMC draw or a posterior estimate, Kalman filter and smoother
can be used to compute the observation weights of the TVP-SV-Fama regression model (?7),
with respect to the UIP coefficient ;. For simplicity, we assume «; = 0 for all ¢, which is in
line with our empirical results. The model becomes

Pr+1 — B, + O¢

—€t,

Bir1 = B + opnpe-

Suppose the system were time-invariant with error variance o?.

€

Kalman filter outputs reach
their steady state quickly (Durbin and Koopman, 2012, Chapter 4). Let a; and P, denote the
filtering expectation E(B|{psi1, —is}'2t) and variance Var(B;|{psi1, 15 —is}'Z}), respectively.

The Kalman filter iterates forward over

P, Pis1 P,o? 5
Q1 = ag + —— )|, Pp=5—5+0
t+1 t P +o? (Z;_Zt ¢ t+1 n 3



The steady state is given by the fixed-point solution to the second equation, and it is P =
(¢ + /¢ +4q)/2 where ¢ = 03/0? is the signal-to-noise ratio. Let b, denote the smoothed
expectation E(B¢{psi1,it —is} ;). The Kalman smoother iterates backward from rz = 0 and

Var(r;) = N; over

. 2
P/ (@7 — i) — ay o? 1 o?
4= + , by=ay+ P, Nyq= + N;.
rtL P, + o2 Pt—i—azrt ¢ e e =1 P, + o2 P, + o2 !

Because pthzgg < 1, the steady state of N, exists and equals to N = (P + 02)/(P? + 2Pc?).
Suppose we can write b, = E]T:l wjtlpj+1/ (45 — i;)] with weight wj; associated with the j-th
observation corresponding to ¢-th smoothed estimate. Then we have E(bse;) = wji E([pj11/ (i —

i;)]€;) = wji, but also

—Cov(e; — E(ej[{pst1,i —isty), B — by), for j <t
E(thj) =
—Cov(B; — bi, €5 — Eej{psyr, 55 —is}isy)), forj >t

s=1

After minor algebraic manipulation, the steady state gives for j < ¢

T P o2 "7 Po?
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Similarly, for j > ¢ we have

g
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Therefore, as j moves away from ¢, observation p;1/(i} — i;) receives exponentially declining

weight proportional to

[t—3]
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When SV is present, the first-order approximation of the weighting function can be computed
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Figure 4: Weighting functions implied by the TVP-SVX-Fama regression model. The left, middle
and right figure show the effect of volatility oy, interest rate differential i} — ¢;, and cross-sectional

correlation in z; on wj; for j =1,...,19 and ¢ = 10.

by replacing o with o2/(i; — i;)%.! So if o, increases or the interest rate differential i} — i,
decreases, wj; becomes larger. This means that during volatile times, the estimation of the
slope (; relies on more backward and forward information, and vice versa.

In section 4.3 of the main text, we conduct a robustness check where the state dynamics
is augmented with regression effects from US economic shocks. In this case, a% in the above
observation weight is replaced by 0[23 + 5T17y7ys, meaning that the signal-to-noise ratio, and
thus the weight, is also affected by the variation of shocks. In Figure 4, we plot the weighting
function for estimating (;p with 7' = 19 under increasing volatility, changing interest rate
differential and changing cross-sectional dependence in x;.

In sum, the data-driven feature of the model considers more observations when estimating
By if the signal-to-noise ratio is low. In particular, remote observations (i.e. j is away from t)
becomes more important if period t is associated with (1) high uncertainty or volatility; (2)
small interest rate gap; (3) low variation in non-US shocks; and (4) low variation in US shocks.
This is intuitive because low signal-to-noise ratio leads to estimation uncertainty, which should

be mitigated by using more observations.

Derivations of filtering weights for a simpler local level model with SV can be found in Shephard (2015).



C. Additional empirical results

C.1. Break date determination via marginal data likelihood

In section 4.1, we estimate the SV-Fama model with a break in the slope coefficient. To
determine the break data, we consider a sequence of models, with each defined by a break data.
Suppose the i-th model indicates the model with a structural break in slope occuring at time
10+4,7=1,....,T — 21. We then compute the marginal data likelihood for all T"— 21 models
via E

p(p1X0) = [ (6l X, 0)m(6)d6 ~ >~ p(pIX,.67),

j=1
where Y, j = 1,...,J, is a draw from po(8), the prior distribution of the vector of static
parameters @. This means the middle term in the above is the integrated likelihood, and
the right term is an unbiased estimate of it. X; is a T' x 3 design matrix with the ¢-th row
(1,47 —14,0) if ¢ < @ and (1,4} — 4,47 — ¢;) if t > 4. We can partition 8 = (3',v,)’, where 3
is the 3 x 1 vector of regression coefficients (i.e. the pre-break slope is Sy and the post-break
slope is 32 + 33), and vy, is the innovation variance of the random walk log variance h; = log o7
in the SV-Fama regression.

Drawing from the prior is trivial. We focus on the evaluation of p(p|X;, %), which is an

integrated conditional likelihood:

p(p|X.,09) = / p(p| X1, b, 69)p(h)dh. (1)

where h = (hy,...,hr). In the above, the right term involves high-dimensional integration,
and thus cannot be evaluated by Monte Carlo integration feasibly. One can use a particle
filter to integrate out the SV sequentially (Chib et al., 2002). Considering the sheer number of
model evaluations, we adopt the numerically accelerated importance sampling (NAIS) method
developed by Koopman et al. (2015) and Li and Koopman (2021). NAIS is specifically designed

for SV models and performs way faster than popular sequential Monte Carlo methods.



For each 7, X; and 0Y) are fixed, so we suppress the dependence and denote € = p — X ;3.

It follows from (1) that p(p) = p(e) and

ple) = gle) [ LDy Z @

where ¢(.) is the density implied by an importance model which enables evaluation of g(€) and
drawing h®, k=1, ..., K, from g(h|€) to easily construct the unbiased estimate expressed by

the importance weights w®). The importance model is chosen to be linear and Gaussian

b 1
= =R+, 77tNN<0,—>;

(&7 Ct

(3)
he = hi—1 + /vnens, €nt ~ N(0,1),

where (by,¢;), t = 1,...,T, are importance parameters to be determined and implicit functions
of data. In the above, the state transition is identical to the SV-Fama regression model, so

p(h) = g(h) and the importance weight is given by

T

(k) _ Ple |h™))p( h(k H €t|hk)
g(elh™)g(p =1 g(elh)

w

where p(et|h£k)) ~ N (O,exp(hgk))) given by the SV-Fama model, and it is easy to show that

g(e| B\ = g(b/cr|BP) ~ N(B™ 1/¢,) such that
1 2
IOg g(etlht) = a; + btht — §htct7

where the constant a;, = —%(log 21 — logc; + bcy) does not dependent on hy. That (b, ¢;)
enters log g(€;|h;) linearly means that the optimal importance parameters can be found in a

least squares problem:

S 2
new : S S 1 S
(b, 1) =argn;;cn§_;(bgp(etmi))—a—hﬁ b+ 5 (i >>2c> ,



where (1, 1", —(h{?)2/2)' is the vector of regressors. With s = 1,..., S, they form a set of

“data”. One can draw h!” from g(hl€) implied by the importance model (3) under (b, ¢;)°

t =1,...,T. But NAIS method makes this process simulation free, by using Gauss-Hermite
quadrature. This means we simply set his) = E,(h€) + /Var,(hi|€)zs, where E,(h:|€) and
Var,(h:|€) are smoothed mean and variance under the importance model (3) which are easily
obtained by Kalman smoother, or even more efficiently by the precision sampler of Chan and

Jeliazkov (2009), and where z; is one of the 10 Gauss-Hermite nodes associated with weight ¢;.

This leads to a weighted least square problem:

10

2
new _ - &y _ 6y L)y
(b, ct) —argnt}in;qs (logp(elht ) —a=h7b+ S (hy )C> ,

After finding the optimal importance parameters, g(€) can be computed from Kalman filter
applied to (3), or even more efficiently from the precision sampler of Chan and Jeliazkov (2009).
This gives us all ingredients for computing the integrated likelihood (2). NAIS method requires
more coding effort than particle filtering, but is much more efficient and accurate for SV models
(Li and Koopman, 2021). Its speed turns out to be instrumental for break date determination
which involves otherwise a prohibitively large number of model evaluations. In our exercise,
we choose J = 10,000 (i.e. 10K draws of static parameters are made from its prior) for each
possible break dates, totaling 2.82 x 10° marginal likelihood evaluations. For each currency
pair, it takes around 8 minutes on a personal laptop without parallelization.

Figure 5 shows the marginal data likelihood for the SV-Fama regression with a break in the
slope, at each possible break date and for all currency pairs. The break data is chosen to be

the one that maximizes the data likelihood.

C.2. More on mixing properties

As a monotonic transformation of the inefficiency factor used in the main text, Table 1 presents
the effective sample size computed by the method given in Roy (2020), divided by 5,000. When

computing, we use Bartlett weights. Exponential weights generate similar results.
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Figure 5: Marginal data likelihood of the SV-Fama regression model. Each possible break date
gives a model which is evaluated via the marginal data likelihood. Candidate break dates cover 1995

- 2016. Red indicates the date that corresponds to the highest data likelihood, pinning down the
break date.

Table 1: EFFECTIVE SAMPLE SIZE OF TVP-SV-FAMA MODEL PARAMETERS

NO CA Jp DK CH UK
Ve 3.26 1.73 2.01 1.04 1.67 1.35
vg 1.85 1.70 2.22 1.16 1.41 0.76
Vlog o 0.82 1.06 0.81 0.68 0.65 0.63
{a;} 1.5- 4.6 2.3-48 1.3-24 11-63  0.8-4.3 1.4-34
{8} 08-27  09-30  08-32  09-19 12-38  0.6-18

{logo?} 04-09  04-10  03-50  04-14  03-06  05-08

The table summarizes effective sample size of the TVP-SV-Fama model parameters, divided by 5,000. For
TVPs, the minimum and the maximum of effective sample sizes across all t are reported. Results are based
on every 5-th draw from the 50,000 MCMC samples after the burn-in period.
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Figure 6: Posterior trace and autocorrelation function. The blue lines associated with the left y-
axis indicate the scaled MCMC sample paths for the three variance parameters. The red curves
associated with the right y-axis and x-axis ticks divided by 200 show the first 50 autocorrelation

functions.

Among all model parameters, the smallest effective sample size is 1,366, sufficiently large for
computing posterior statistics reported in the main text. To complement the results on the
total absolute autocorrelation function in the main text, Figure 6 reports the posterior traces
of the variance parameters and the associated first 50 autocorrelation functions for each of the

variances. Convergence is clearly achieved with satisfactory mixing.

C.3. Intercept coefficients from the TVP-SVX-Fama model

Figures 7 shows estimated regression coefficients -, (rescaled for readability) and summarize
which economic shocks affect a; and by how much. Comparing the the effects on (; reported

in the main text, we see more heterogeneous effects across shocks, with investment and wage
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Figure 7: Effects of US shocks on time-varying intercept. Reported are estimates of 100 x ~, of the

TVP-SVX-Fama regression for six currency pairs. Each coefficient in v, measures the responsiveness

of a; to a US shock, whose range, 0.05, 0.5, and 0.95 posterior quantiles are indicated by the vertical

bar, the lowest, the middle, and the highest circle, respectively. Red diamonds indicate shocks that

are not selected by Bayesian Lasso.

shocks as leading examples. This suggests that structural shocks affect excess returns mostly

via the covariance between expected depreciation and interest rate differentials.

D. Model sampling details

D.1. Sampling interest rate parity coefficients

The TVP-SV-Fama model (8)-(9) in the main text gives the conditional likelihood

p(61p. D, o) o [S]F exp (—%m— 26)s \(p - za>) .

The state equation (9) in the main text implies a joint prior for e and 3 via

8|0 ~ N(p, H'Q'H)™),

where p = 0, H is a sparse lower-triangular band matrix with ones on its main diagonal

and minus ones on its second lower diagonal, and Q = diag(10°, 105, v, vg, ..., Vs, v5). So, the

12



conditional prior is given by
1
pu(810) o [E'S Eexp (56 — W H'OHS - ) ).

Combining the above with p(d|p, D, o), we obtain the conditional posterior given in the main

text.

D.2. Sampling of the TVP-SVX-Fama regression model

Let f = (f1,..., fr) and X = (@1, ...,x7)". Given the conditional likelihood I:If|X,’yf,vf ~

N(X~,velr) where It is a T x T identify matrix, it can be shown that

. ~ —1
’Yf‘_f,?}f,’ff, "'77_3 ~ N(7fﬂvf27f)7

where 4, = ﬁ];jX'I:If and ZA]W = X’X 4+ T, Combining the conditional likelihood and the

improper prior po(vs) = 1/vy, the conditional posterior for the innovation variance satisfies

T—-1 J (Hf-X~)(Hf-X A
vf~1G< . +§’( f 7f)2( f vf)+'rf27f |

Combining the conditional likelihood po(v|vy, 77, ..., 77) ~ N(0,v,T") and the exponential prior

p()(TjQ) ~ Exp(\/2), we obtain the conditional posterior of 1/7;, j = 1,..., J, given by

p(1/75 g vg) o VAr 2 exp (—”j“/ U/l ) ,

2412

which is the kernel of the inverse-Gaussian density with parameter p = /Avs/vr; and A. We

use the algorithm in Eisenstat et al. (2016) to sample from the inverse-Gaussian distribution.
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E. Extended model

We consider a TVP-SVX-in-mean model, similar to the SV-in-mean model developed in Sarantis

(2006) and Chan (2017). The model is given by

. h
pry1 = oy + B3y —iy) + dpexp(hy) + exp (Et) €, (4)

and oy, f; and ¢; are TVPs that follow autoregressive distributed lag dynamics driven by their

own past, innovations, and a set of US structural shocks; that is

fo=ps(1 —@f) + Qpfi1 + xyy + Nre, f=1a,B,h}

In this formulation, h; is the time-varying log variance of Fama regression error term. d; captures
the time-varying feedback effect from the risk premium received from forward speculation. As
a robustness check, we consider autoregressive dynamics, rather than a random walk, for state
variables.

Figure 8 shows the estimated time-varying intercept in the extended model (4) for the US-
CA pair, in comparison to that in the TVP-SVX model. With autoregressive dynamisc, the
TVP-SVX-Fama estimate of a; and oy = exp(h:/2) follow closely with those given in the main
text. This means that our resutls are robust to different specifications of state transition.

Comparing the intercept obtained from the SV-in-mean model, we see a clear difference
between a;’s from two models. The intercept from the extended model shows a lower degree of
time variation. In fact, its 90% credible band covers 0, the theoretical value of the intercept.
This result is also obtained by Sarantis (2006) where the author uses a traded volatility index
instead of model-implied volatility. The muted variation in a; prompts one to consider two
possibilities: (1) temporal variation in oy is dominated by that of &; exp(h;), as an additive
term in (4), or (2) the TVP-SVX model is incorrectly specified.

As can be seen from Figure 8, the evolution of §; has low persistence while fluctuating around

zero — an overfitting sign that §; captures noise rather than a signal in the dynamics of the
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Figure 8: Estimates of time-varying coefficients for Canada under the extended model (4).

exchange rate. Interestingly, when we consider the intercept term in the extended model as
ay + 0, exp(hy), we observe similarity between the two models as shown in the top-right panel
of the figure. Notice that this result does not conflict with ¢, is largely around zero. Because
the median of é; exp(h;) does not equal to median(d;) exp (median(h;)), due to the nonlinearity
of the product function.

The similarity between the estimate of oy + &; exp(h;) from the extended model and oy from
the TVP-SVX model leads us to conclude that the TVP-SVX can capture the effect of risk
premium on deviations from UIP in a similar way as the more involved extended model (4).
This is to a large extent expected because of the inclusion of US structural shocks in the
dynamics of «; in the TVP-SVX model which span a space that covers the unobserved risk
premium. Estimation results from other currency pairs robustly give us the same conclusion.
Therefore, we prefer TVP-SVX model over the extended model due to its simpler form and

estimation.
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