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S.1 The leverage effect multiplier

The leverage effect for the univariate SV model is Corr(vg,n:) = Cov(vg,m:)/+/ Var(v) Var(n),

where the numerator

Cov(v, ) = E(v/ Wi)po.
Since Wy ~ IG(%, %), %Wt is IG(%, 1)-distributed or Inv — x?(¢) distributed. Let W; = /W,
we have %VNVE ~ Inv — x2(¢) with Jacobian %Wt It follows that
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where we use substitution y = \%Wt and z = %y*Q. In the denominator, the variance of the
generalised hyperbolic skew Student’s t-distributed error v; is given by Aas and Haff (2006) (in
their parametrisation 62 and v are both equivalent to our (), i.e.

26%¢? ¢
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With these quantities, the unconditional leverage effect multiplier can be shown to be to one

given in Section 2.1.

S.2 Marginal likelihood estimation

S.2.1 Importance sampling squared for marginal likelihood estimation

For model comparisons, one needs to calculate the marginal likelihood p(y1.7| M) under a certain

model M, so that the Bayes factor p(y1.7|M1)/p(y1.7|Ms) can be computed'. Let us suppress

!See Chib (2001) and Chib and Jeliazkov (2005) for alternative methods that deal with models of less complexity,
using the so-called “reduced MCMC” run based on likelihood identity.



the dependence on model M. We can write the marginal likelihood as

p(yir) = /p(yLT,@)d@ = /p(ylzTW)Wo(@)cw

_ /p(y1:T|9)7T0(9)

0y1.7)db,
Olorr) q(0|y1.7)

where 7y (0) is the prior, and ¢(0|y;.7) is an importance density mimicking the posterior 7w(0|y;.7)

p(y1.7|0)m0(0). The above integral can be computed via Monte Carlo simulation. It follows

p(y17]0°)m0(6°)
Q(GS’ylzT)

p(yrr) = %Zw(@s), where w(6°) = and 6° ~ q(0|y1.T). (S1)
s=1

The is straightforward to implement if the likelihood p(y1.7|€) is available in closed form, which
is not our case due to many latent processes. Tran et al. (2014) show that under mild conditions
that if there exists an unbiased estimate of the likelihood, i.e. E(p(y1.7]0)) = p(y1.7|6), averaging
importance weights to compute the marginal likelihood as formula (S1) is still valid with p(y1.7|0)
replaced by p(y1.7(0)?.

The particle efficient importance sampling (PEIS) developed by Scharth and Kohn (2016) pro-
vide a particle MCMC method (Andrieu et al., 2010) that we can use within the IS? framework
3. PEIS is similar to the PGAS-EIS sampler which builds a sequential but globally optimal im-
portance density q(z¢|zi—1,y1.7). Conceptually, the global optimality of PEIS which minimises
the variance of importance weights as in (5) and (10) is what makes it efficient for evaluating
marginal likelihood.

The algorithm is straightforward at first sight: (i) construct ¢(f|y;.7) based on posterior
samples; (ii) draw 0° ~ ¢(0|y1.7); (iii) construct an importance density based on 6°; (iv) apply
PEIS to compute p(y1.7|0°) and w(6*); (v) average out w(6®) for s = 1,...,.S. Unfortunately,
this IS? algorithm is infeasible. The construction of an importance density that targets the
2x (n+p) x T-variate density p(hi.7, l1.7, Wi.r, Q1.7|y1.7, 0°) is nearly impossible. To circumvent
this problem, we propose a feasible IS? alternative.

Suppose we have stored the importance parameters corresponding to the n+p proposals when

applying the PGAS-EIS sampler within each iteration of the Markov chain. We can start the

2For many models, an unbiased estimate of likelihood is readily available using particle marginal Metropolis-
Hastings (PMMH) algorithm (Andrieu et al. 2010 and Del Moral and Formulae 2004). For example, the
paper of factor SV model by Chib et al. (2006) applies the celebrated auxiliary particle filter (APF) of Pitt
and Shephard (1999) to compute the posterior ordinate for the evaluation of Bayes factors based on reduced
MCMC run.

3 According to them, PEIS significantly outperforms PMMH and particle MCMC in terms of variance reduction
for the Monte Carlo estimate of likelihood which is critical for efficient computation of marginal likelihood.



feasible 1S? algorithm by firstly constructing q(f|y1.7). Suppose we believe that after a chosen
burn-in period, the chain has converged to its stationary distribution. We have a posterior
sample of 6 as shown in Figure S.1 (for simplicity we illustrate the vector as one-dimensional).

An m-component Gaussian mixture is fit to the posterior sample of # via standard EM algorithm®
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Figure S.1: The posterior sample of 8 after convergence. The red bar indicates a certain 6°.

with m determined by information criterion.

Importantly, we then draw #° non-parametrically from ¢(6|y;.7). That is, 6° is a vector in the
posterior sample as the red bar in Figure S.1, with the probability of being drawn proportional to
q(0%|y1.7). After this step, we can simply retrieve the corresponding importance parameters from
the n + p PGAS-EIS samplers. This enables us to apply PEIS to compute p(y1.7|6°) and thus
the marginal likelihood. This procedure completely avoids the construction of an intimidatingly
large importance density by utilising the n 4 p individual proposal densities constructed when
applying the PGAS-EIS samplers. We leave details of applying PEIS in the IS? framework to
the factor SV model in the appendix. Also, the appendix discusses forecasting and filtering

methods following Chib et al. (2006) which we use in our empirical study.

S.2.2 Particle EIS and 1S? details

In the following, we slightly abuse the use of notations. PEIS finds an unbiased estimate for
the likelihood function p(y1.7]6) = p(y1]0) Hthz p(yt|y1:4—1, 6) by propagating the particle system
with forward weights resampling (Shephard and Pitt 1997 and Scharth and Kohn 2016). Suppose

at time ¢, one has the particle system {z%.,,w!}M, where

fE;E = {{hi‘,t}ﬁ-’:p {I/V},t}?:la {l/’;,t}ﬁzl, {Q?;,t}Zzl}-

4For parameters that take restricted values, say o, > 0 for k = 1, ...,n -+ p, we consider transformation such that
logor € R.



Suppressing the dependence on 8° which is a specific draw from the posterior sample of 6, the
g

forward weights are calculated according to

. . xi; 03
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where @i is the normalised weight @} = w!/ le\i L wie xq(ah; 68 '+1) is the integration constant of
the importance density q(z%, |z, y1.7), the product of n+p individual EIS importance densities
t+11T¢
with parameters 6%, , with kernel k,(z¢ ,,2%; 6%, ,); whereas x,(z!_;;y,—1) is the integration
p t+1 g\ 415 L Opg1 pte—1

constant of the transition density p(x¢|zt_,,y:—1). Next, with the normalised forward weights
Yy t—12 Y

one calculates the effective sample size ESS = 1/ Zf\il(ﬁi)Q If ESS drops below a predeter-
mined threshold, resampling is applied to M particles {x¢}}, with probability {ﬁi}f\il, and
all normalised weights w? are set to be 1/M for i = 1,..., M. At time t + 1, M new particles
{1}, need to be generated from the importance density q(z41|2}, y1.7), which requires M
draws from n + p individual importance densities with each as in (8). To do this, we have to
recover the factor process, which is needed to propagate the SV processes due to the presence

of leverage effects. We take the conditional posterior mean of the factor process, i.e.
fi = WUHTA+ (V)Y U) g + (V) TR, (52)
where !, Ff, V' and U} are as in (17). The idiosyncratic noise is thus
up = yp — Afy.

With both f} and ui, leverage effect can be accounted for. For example, h;t yqfori=1,..,.M

can be obtained by
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with n}'f’ti ~ N(0,1) for j = 1,...,p. Other latent processes propagate similarly’. Once the

prorogation of all particles is finished, the importance weights are recalculated as

; @i X p(yerr |z )p(@i |2, ye) kg (2, 245 6e41),  if resampling
Wi X p(ye1] 2y )P(@q 2 ve) /@@ 2y, yir),  otherwise.
The last step at time t is to record the estimate of the likelihood contribution via
M = M . .
>oig,y W%)(lel wiyq), if resampling

M .
D e Wit otherwise.

P(Yet1ly1e) =

Once the propagation of particle system reaches time 7', the unbiased estimate of likelihood is

simply given by p(y1.7]0) = p(y110) TT1—s Byt |y1:4—1,6) with obvious modification to p(y1]6).

S.2.3 Simulation study

For model selection, we compute marginal likelihood used in Bayes factor via the feasible IS?
method introduced in Section 3. We here focus on the ability of feasible IS? to select the correct
number of factors.

Table S.1 shows conditional average log-likelihood or posterior ordinate with hyperparameters
evaluated at their posterior means 9, using the modified PEIS method (see appendix), i.e.
%ﬁ(ylzT\é). We report evaluations with different number of particles which provides a guideline
as for how many particles are needed for empirical use®. From Table S.1 we see that, the log-
likelihood estimates for alLE._aSK converge with 100 particles. For nLE_nSK and sLE_aSK with
the number of particles larger than 200, there is no major difference in the log-likelihood. For
aLLE_sSK and sLE_sSK, more than 300 particles lead to converged log-likelihood.

It is reasonable to believe that the number of particles needed does not change significantly
across different parameter values when one computes the likelihood (Tran et al., 2014). So
when applying IS? to calculate the marginal likelihood, we use 300 particles for each draw of

parameters. We simulate 30 times to obtain 30 different sLE_sSK datasets with 8 factors as

5 Antithetic variables are used to reduce Monte Carlo noise during particle propagation. In particular, pairs of
perfectly negatively correlated Gaussian variables are generated for all SV processes (Durbin and Koopman
2000 and Scharth and Kohn 2016), and pairs of inverse gamma variables are generated using a Gaussian copula
with perfect negative correlation.

Scharth and Kohn (2016) detail an algorithm to choose the number of particles using PEIS based on the
trade-off of overhead cost for constructing the EIS importance density and the Monte Carlo variance of log-
likelihood. But this procedure becomes prohibitively time-consuming for our high-dimensional model, we thus
use a simple heuristic.



Table S.1: PEIS LOG-LIKELIHOOD EVALUATION

Number of particles

Dataset 100 200 300 500 1000

sLE_sSK _1864.79 -1834.26 -1833.68 -1833.27 -1833.34
sLE_aSK -1824.61 _1819.57 -1819.24 -1819.66 -1819.29
aLE_sSK -1841.27 -1828.03 -1830.86 -1830.94 ~1830.62
aLE_aSK -1812.46 -1811.74 -1811.09 -1811.42 -1812.00
nLE nSK -1923.95 -1920.53 -1921.81 -1921.86 -1921.44

Reported are average log-likelihood evaluated at posterior mean estimates of hyperparameters using different num-
ber of particles.

Table S.2: FREQUENCY (%) OF BAYES FACTORS WITH DIFFERENT NUMBER OF FACTORS

DGP: 8 factors

sLE_sSK 1-3.2 3.2-10 10-100 ~100 Total>10
8/6 0 0 0 100.00 100.00
8/7 0 0 0 100.00 100.00
8/9 0 0 3.33 96.67 100.00
8/10 0 0 0 100 100.00
7/6 0 16.67 40.00 43.33 83.33
7/9 0 6.67 56.67 36.67 93.33
7/10 0 3.33 6.67 0.90 96.67
9/6 0 0 0 100.00 100.00
9/10 0 16.67 36.67 46.67 83.33

The choice of range for Bayes factors is according to the Jeffrey’s scale. Frequency distribution is determined across
30 simulated replications. The leftmost column indicates the comparison between two specifications. For example,

8/6 corresponds to the Bayes factor of a model with 8 factors against the one with 6 factors.

before. Out of the 30 simulated replications, the IC_p1 criterion of Bai and Ng (2002) chooses
8 factors 21 times, and 6, 7, 9, and 10 factors twice, twice, 4 times and once respectively.
Table S.2 shows the model comparisons based on Bayes factor. The Jeffrey’s scale suggests
decisive evidence in favor of the model with 8 factors against all cases. It can be concluded that
if the true DGP follows sLE_sSK, Bayes factor based on the feasible IS? method of computing
marginal likelihood is more convincing than the criteria of Bai and Ng (2002). Furthermore, we
emphasize that the proposed feasible IS? procedure is much more easy to implement than the

reduced MCMC run method in Chib and Greenberg (1994) and Chib et al. (2006).



Table S.3: NUMBER OF FACTOR BASED ON MARGINAL LIKELIHOOD

Number of factors
4/2 4/3 4/5 4/6 3/5 3/6 6/5
1-3.2 - - — - - Vv -
3.2-10 - - - - v - v
10-100 Vv Vv - — - -
> 100 - — v o _ _ _

Shaded cell indicates the Bayes factor using IS* marginal likelihood for one choice of number of factors against an-

Jeffrey’s scale

other falls into a certain category given by the Jeffrey’s scale.

S.2.4 Empirical application

Table S.3 shows the Bayes factor calculated via IS? marginal likelihood for model specifications
with different number of factors. The number of factors under consideration are between 2 and
6, in line with other literature. Model with 4 factors is preferred over all other specifications, in
particular over model with 5 and 6 factors, which is the choice made by the IC_p3 of Bai and
Ng (2002). Also the IC_pl delivers almost equal values for specification with 5 and 6 factors.
Via the use of IS? for calculating the marginal likelihood, we can safely choose a model with 4
factors. Other comparisons show that the model with 3 factors is slightly preferred over 6-factor

model, and evidently preferred over the model with 5 factors.
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