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Abstract

This supplementary appendix uses the same notations as in the main text, unless
stated otherwise. Section 1, 2 and 3 provide proofs for Proposition 1, 2 and 3,
respectively. Section 4 details the sampling procedure, including methods for system
parameters that are not included in the main text due to limited space. Section 5

provides extra evidence on the stability of the structural matrix A.
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1 Proof of Proposition 1

From the autocovariance function of the VARIMA (p, 1, d) representation, X only involves
the coefficient matrices of the VAR(p) cycles. Let Cy2 denote the commutation matrix
such that for any N x N matrix M for which the relation Cy2vec(M) = vec(M’) holds,

so X is given by
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To show that the (N?p+ fN?+ 1N) x £(5N? + N) matrix B is of full rank, it suffices to
show that via elementary row operations the transformed matrix has 1(5N?+ N) non-zero
rows, so that 5 is uniquely determined and so is €. Notice that vec(€2.)" has N(N —1)/2
elements that are shown up twice; but since ) and X are implied by the CUC model, it
automatically guarantees such a structure.

Let Xi}r denote the ij-th block of matrix X detailed above, i =1, ...,p+1and j = 1,2, 3;
let X" denote its transformation via elementary row operations with block A7;. If X * has
rank 3(5N% + N), we should be able to construct X* such that Xj; is of full rank N2
According to Assumption 1, we can construct a coefficient sequence p; fori =3,...,p+1
with

—Ci—1, for v = 3,
Pi = A
—Y Ty, ford<i<p+l.

This allows for X755 to be constructed by

p+1
Xy = ZPin'Jsr =In® B,
i=3

which is of full rank N? under Assumption 1. So we align Ay, with Z?:; pi)(g forj =1,2.
Then we construct

p+1
X=X+ ) (p+ DXL, =123
1=3

]
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And the first row block of X* is the same as that of X',
According to Morley et al. (2003) and Trenkler and Weber (2016), X* has a rank
deficit only if there exists a %(N +1)N x 1 vector f; and a N? x 1 vector f, such that

(f{(Xl*:z + 2DJ_\‘7'X;3> - féX?f:s)DN = le%N(N—i—l)? (1)
f{(Xl*l + QDXIXQ*O - f2X3*1 = le%N(NH)- (2)
It can be easily verified that Xjy + 2D} X5 = 2D Xs5; so (1) gives f) = 2f]D},. With

the constructed full rank Xj; = (Iy ® B), it follows from (2) that we need

p p
F(DX(In = Bei) ® (In =Y Bei)lDn) = 0yt v
=1 =1

to ensure rank deficit. But this is not possible under the condition that the VAR(p) cycles

are stable. This means the rank of X* must be full, and so is X

2 Proof of Proposition 2

It follows from Assumption 1 that the following decomposition holds
Ol =0'C, Q= C'diag(wi g, ..., wi2)C.

Lanne et al. (2010) show that C, with diagonal elements ¢11, ..., ¢k, is unique up to row

order and sign change if and only if for all 4,5 € {1,..., K'}, i # j we have w; 2 # wj».
This result also applies to our setting by defining A = diag(cyy, ..., cxx ) 1C, so that A

has unit diagonal. This means that A is a normalised version of C' and its row ordering and

sign are determined since the normalisation is done via its diagonal elements. By replacing

C with diag(cyy, ..., cxx)A we have Q7' = A'S7 1A for i = 1,2, or Q; = A1y ATY,

3 Proof of Proposition 3

Similar to the discussion above, writing Q;' = C'C' yields

Q, = C'diag(07,/05 1. 054 /051)C, t=2,..,T.



Based on Bertsche et al. (2018), C' with diagonal elements ¢y, ..., cxx is identified up
to row order and sign change a.s. under the random walk specification. Defining A =
diag(ci1, ..., cxx) " 'C (so that it has unit diagonal), and replacing C by diag(ciy, ..., cx ) A,
we have ;' = A’S;7'A. Uniqueness is achieved by respecting that A is a normalised
version of C' and its row ordering and sign are determined. The result also carries over to
the case where there exists one structural shock having constant volatility, as proven by

Bertsche et al. (2018).

4 Details of the sampling procedure

Sampling 6; ;.
Firstly, notice  that if §;; is  N(0,~;)-distributed, a new draw

— / 1) 19
071 = (04155 6iim15 i 15 ooy 04 Ni—1, ONtit1,5 - O )" can be generated from N (ugy, V5)),

where
a i -
5 _ t .
e = 5 59 + diag (Y1, - Yie1, Vil - YN4i- 1, YN4it 15 s V) )
t=2 ( ,N+i — ]') O-’i,stflwiystfl
b * *
5 gl xt(Ti,t - 5i7N+iyi,t)
Hip = ¥i

. _—1)2+2 . ’
=2 (5Z7N+1 1) O-z',stflwl,szfl

If the initialisation of unobserved components is omitted, the new draw is accepted with

probability of one, but not from the correct conditional posterior. Notice that in

2
vec(V.1) = (Iny — B ® BY) 'vec (Z WiRCQiR/C> :

i=1

B! and ;, i = 1,2 are functions of A, and thus of §}; conditional on other parameters,

so with initialisation considered, the draw is accepted with probability

o Vea (B2 exp(= ey Ve (93) )
’ch,l((sil)rlm eXp(—%xlc,1Vc,1(51'1)*1%,1)’ ’

where ¢;; (without asterisk) is the previous draw in the Markov chain and x.; denotes

the cycle components in zy, i.e. z.1 = (c1,...,Ca—p)"

Secondly, defining y;; = T;:t — 01Tt — o — Oii1Tic1t — Oiit1Tig1t — - — Oj N41C1¢t —



.. — 0; kCN+, the proposed transformation

*
Tit =0T+ -+ 0 i1Ticie + 0iip1Tigr,e + oo + 0 NTN

+ o Nt1C1e+ o+ 5i,N+z‘th + ..+ 0ikene + (0Nt — L)eir—1,

becomes

Yit = 5¢,N+1th + (0inyi — 1)ejio.
Ignoring initialisation, the conditional posterior follows

T N
b~ O 2 ouvetia” 10w
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This non-standard univariate distribution can be well-approximated by a Student’s t-
proposal with mean j, and scale parameter W2, equal to the mode and curvature around

the mode of the above density function.! That is, we apply Newton’s method

1¢5(n)
n+1 n p (5i,N+i")
5§,N+3 = 5§,J\)/+z‘ -

to find the mode iteratively, with 5,571]3,“. = Cov(Jis, y;,)/Var(y;,) and
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until some convergence criterion is met. Let pd denote the mode and define W9, =

—1/p"(1%]-). A new draw 6; v, is generated from a Student’ ¢-distribution T'(yid, ¥2,, ),

!More efficient proposals such as a mixture of Student’s ¢-distributions can be easily constructed
(Basturk et al., 2017) due to the fact that we deal with a univariate distribution. We find that a simple
Student’s t-proposal suffices.



with the degrees of freedom v arbitrarily chosen. The draw is accepted with probability

min H/C 1( ’LN+’L>’ 1/2 €xp (——l' ‘/Cl<5z N+z) lxcyl)p( ;(,N+i")T<5i7N+’i;/Lg27\11?27V) 1
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where p(&; n1i].) is the density kernel in (3) and T'(8; nyi; p1dy, U, v) is the density of
constructed Student’s t-proposal evaluated at d; y1;. Once 0;; and 0; n4; are generated,

A;_ is computed using
Gij=——— = —Ay(l = dingi), jE{Li—Li+1,. K},

as given in the main text.

Sampling ®, 071, wia, P, 7o and ;.
We sample ® independently equation-by-equation. Based on B = A7'®(L,), we notice
that only the sampling of ®,. is needed (i.e., the autoregressive coefficient matrix for the

VAR(p) cycles). Using
A = Py + ey, Ty = (Tt/+1> C::+1>/a (4)

standard Bayesian calculation shows that posterior draws of ®_ can be generated from

N(Ai,p?, ‘I’?)]l{||Bg||<1}, Where

-1
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t=1
and ||B¥|| denotes the largest eigenvalue in absolute value of B so that the indicator

function 1y ps||<1} guarantees that the VAR(p) cycles are stationary. Taking initialisation

into account, the draw is accepted with probability
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For i =1, ..., K, the volatility parameter 03 , can be sampled from

T—1
T (Aimp — Dy_xy)?
]G v a0 Mvu
<a o Y

and the variance ratio w; > can be sampled from

20;
teTy L5t
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These draws are accepted with probability
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The posterior draws of transition probability are sampled via a 2-dimensional Dirichlet

distribution. Specifically, we draw P}_ and P,_ from

T T T T
Dirz(eﬁ'z o i=1,60=1}, €2+Z T, =15=2}), DiT2(€2+Z T =251}, €1+Z Lo, 1—2.5=2}),
t=2 t=2 =2 t=2

respectively, where ZtT:Z]l{SH:jﬁt:i} counts the number of transitions from volatility

regime j to ¢. The new draw is accepted with probability

Ve (PO exp( =y Ve (P) ')
Vea(B) 72 exp( =gl  Vea () 1aen) © [

Based on the updated transition probability, the index process of two Markov regimes
St is sampled using the forward filter and backward simulation smoother of Chib (1996)
with initialisation taken into account. Through e, = Az, 1 — ®z; and e, ~ N(0,3,), the
algorithm  utilises  p(Sr|e, ..., er) = [T, p(s:|Yr, 041, -, 57,P)  and
p(se|YT, Stv1y ooy 57, P) X D(Seler)p(sii1|st, P) by a forward recursion that determines
p(s¢|e;) and a backward recursion that draws posterior samples of St.

Finally, the posterior draws of shrinkage parameters are directly generated from an
inverse gamma  distribution due to conjugacy. We draw v from
IG(ay, + KT%,B.Y + IR (@ — AW)(® — A_W)) and 4 from
IG(ay + 5548, + 1A A Y fori=1, . K.



Sampling o;,

Under SV, we have A;_@y1 = ®;_x; + ;4 as in (4) with e;; ~ N(0,07,) fori =1,..., K.
We adopt the method of Kim et al. (1998) using a 7-component Gaussian mixture to
draw from p(logoi:|{eis i, pi, s7) and p(s;|{logoi}i5" {ei }=') iteratively, where
sg = {1,...,7} here is a tabulated indicator auxiliary process selecting the mixing

component.

5 Robustness check

Table 1 reports the posterior mean estimate of the structural matrix A in the SCUC
model using the data up until the GFC. This serves as a robustness check in order to
corroborate if the inclusion of this recent period introduces any changes in the A matrix.
The results do not suggest significant differences from what is reported in the main text.
This is so because even if the high volatility brought about by the GFC is ignored, the
data still shows two distinct volatility states, namely the high volatility state in the 1980s
and the low volatility state after the “Great Moderation”.



Table 1: STRUCTURAL MATRIX A OBTAINED FROM THE SCUC MODEL FOR THE US
PHILLIPS CURVE PRIOR TO THE GREAT FINANCIAL CRISIS

Two volatility states Markov regime switching

T1,t Tgt Tot Cit Cot
L 1 0.17 —0.04 0.46 0.10
—3.6 —8.4 —24.8 —4.2
Tyt 0.14 1 —0.55 0.26 —0.22
—-11.2 —-30.4 —14.2 —-17.3
Tot 0.09 0.27 1 —0.38 0.22
—3.0 —-18.3 -12.7 —-15.8
Clt —0.37 —0.22 0.25 1 —0.61
—23.6 —19.5 —31.4 —28.1
Cot 0.22 —0.01 0.09 —0.23 1
—25.6 —0.1 —4.4 —21.0

Stochastic volatility

Tit 1 0.10 —0.06 0.37 0.04
—6.4 3.4 —33.2 —2.3
Tt 0.08 1 —0.52 0.34 —0.30
’ —9.2 —18.2 —26.9 —11.5
Tot 0.11 0.22 1 —0.42 0.31
—6.8 —32.7 —24.1 -30.3
Ci —0.23 —0.21 0.18 1 —0.54
—18.2 —24.0 —22.9 —33.8
Cot 0.20 —0.04 0.14 —0.18 1
’ —923 1.1 —9.2 —-17.2

Reported is the posterior mean estimate of the structural matrix A obtained from the SCUC model,
using data prior to the GFC. Below the posterior mean is the SDDR for testing Hy : A;; = 0, with
boldface numbers indicating strong evidence against Hy. The upper panel shows estimates identified
considering the two-volatility-state Markov regime switching, while the bottom panel shows estimates

identified considering stochastic volatility.
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