
Bayesian analysis of structural correlated unobserved
components and identification via heteroskedasticity –

Supplementary appendix

Mengheng Lia,b∗ Ivan Mendieta-Muñoz c
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1 Proof of Proposition 1

From the autocovariance function of the VARIMA(p, 1, d) representation, X only involves

the coefficient matrices of the VAR(p) cycles. Let CN2 denote the commutation matrix

such that for any N × N matrix M for which the relation CN2vec(M) = vec(M ′) holds,

so X is given by

X =



D+
N (IN2 +

∑p
i=1Bc,i ⊗Bc,i)DN 2D+

N 2D+
N(IN2 + IN ⊗B1)(

−IN ⊗Bc,1 +
∑p−1

i=1 Bc,i ⊗Bc,i+1

)
DN −IN2 −CN2 − IN ⊗Bc,1 + IN ⊗Bc,2(

−IN ⊗Bc,2 +
∑p−2

i=1 Bc,i ⊗Bc,i+2

)
DN 0N2×N2 −IN ⊗Bc,2 + IN ⊗Bc,3

...
...

...

(−IN ⊗Bc,p−1 +Bc,1 ⊗Bc,p)DN 0N2×N2 −IN ⊗Bc,p−1 + IN ⊗Bc,p

(−IN ⊗Bc,p)DN 0N2×N2 −IN ⊗Bc,p


.

To show that the (N2p+ 1
2
N2 + 1

2
N)× 1

2
(5N2 +N) matrix B is of full rank, it suffices to

show that via elementary row operations the transformed matrix has 1
2
(5N2+N) non-zero

rows, so that β is uniquely determined and so is Ω. Notice that vec(Ωc)
′ has N(N − 1)/2

elements that are shown up twice; but since Y and X are implied by the CUC model, it

automatically guarantees such a structure.

Let X+
ij denote the ij-th block of matrix X detailed above, i = 1, ..., p+1 and j = 1, 2, 3;

let X ∗ denote its transformation via elementary row operations with block X ∗ij. If X+ has

rank 1
2
(5N2 + N), we should be able to construct X ∗ such that X ∗33 is of full rank N2.

According to Assumption 1, we can construct a coefficient sequence ρi for i = 3, ..., p+ 1

with

ρi =

−ci−1, for i = 3,

−
∑i−1

j=2 cj, for 4 ≤ i ≤ p+ 1.

This allows for X ∗33 to be constructed by

X ∗33 =

p+1∑
i=3

ρiX+
i3 = IN ⊗ B̄,

which is of full rank N2 under Assumption 1. So we align X ∗3j with
∑p+1

i=3 ρiX
+
ij for j = 1, 2.

Then we construct

X ∗2j = X+
2j +

p+1∑
i=3

(ρi + 1)X+
ij , j = 1, 2, 3.
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And the first row block of X ∗ is the same as that of X+.

According to Morley et al. (2003) and Trenkler and Weber (2016), X ∗ has a rank

deficit only if there exists a 1
2
(N + 1)N × 1 vector f1 and a N2 × 1 vector f2 such that

(f ′1(X ∗13 + 2D+
NX

∗
23)− f ′2X ∗33)DN = 01× 1

2
N(N+1), (1)

f ′1(X ∗11 + 2D+
NX

∗
21)− f2X ∗31 = 01× 1

2
N(N+1). (2)

It can be easily verified that X ∗13 + 2D+
NX ∗23 = 2D+

NX ∗33; so (1) gives f ′2 = 2f ′1D
+
N . With

the constructed full rank X ∗33 = (IN ⊗ B̄), it follows from (2) that we need

f ′1
(
D+
N [(IN −

p∑
i=1

Bc,i)⊗ (IN −
p∑
i=1

Bc,i)]DN

)
= 01× 1

2
N(N+1)

to ensure rank deficit. But this is not possible under the condition that the VAR(p) cycles

are stable. This means the rank of X ∗ must be full, and so is X+.

2 Proof of Proposition 2

It follows from Assumption 1 that the following decomposition holds

Ω−1
1 = C ′C, Ω2 = C ′diag(ω1,2, ..., ωK,2)C.

Lanne et al. (2010) show that C, with diagonal elements c11, ..., cKK , is unique up to row

order and sign change if and only if for all i, j ∈ {1, ..., K}, i 6= j we have ωi,2 6= ωj,2.

This result also applies to our setting by defining A = diag(c11, ..., cKK)−1C, so that A

has unit diagonal. This means that A is a normalised version of C and its row ordering and

sign are determined since the normalisation is done via its diagonal elements. By replacing

C with diag(c11, ..., cKK)A we have Ω−1
i = A′Σ−1

i A for i = 1, 2, or Ωi = A−1ΣiA
−1′.

3 Proof of Proposition 3

Similar to the discussion above, writing Ω−1
1 = C ′C yields

Ωt = C ′diag(σ2
1,t/σ

2
1,1, ..., σ

2
K,t/σ

2
K,1)C, t = 2, ..., T.
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Based on Bertsche et al. (2018), C with diagonal elements c11, ..., cKK is identified up

to row order and sign change a.s. under the random walk specification. Defining A =

diag(c11, ..., cKK)−1C (so that it has unit diagonal), and replacing C by diag(c11, ..., cKK)A,

we have Ω−1
t = A′Σ−1

t A. Uniqueness is achieved by respecting that A is a normalised

version of C and its row ordering and sign are determined. The result also carries over to

the case where there exists one structural shock having constant volatility, as proven by

Bertsche et al. (2018).

4 Details of the sampling procedure

Sampling δi,j.

Firstly, notice that if δi,j is N(0, γj)-distributed, a new draw

δ∗i1 = (δi,1, ..., δi,i−1, δi,i+1, ..., δi,N+i−1, δN+i+1, ..., δi,k)
′ can be generated from N(µδi1,Ψ

δ
i1),

where

Ψδ
i1 =

(
T∑
t=2

x̃tx̃
′
t

(δi,N+i − 1)2σ2
i,st−1

ωi,st−1

+ diag(γ1, ...γi−1, γi+1, ...γN+i−1, γN+i+1, ..., γK)

)−1

,

µδi1 = Ψδ
i1

T∑
t=2

x̃t(τ
∗
i,t − δi,N+iy

∗
i,t)

(δi,N+i − 1)2σ2
i,st−1

ωi,st−1

.

If the initialisation of unobserved components is omitted, the new draw is accepted with

probability of one, but not from the correct conditional posterior. Notice that in

vec(Vc,1) = (INp −B∗c ⊗B∗c )−1vec

(
2∑
i=1

πiRcΩiR
′
c

)
,

B∗c and Ωi, i = 1, 2 are functions of A, and thus of δ∗i1 conditional on other parameters,

so with initialisation considered, the draw is accepted with probability

min

{
|Vc,1(δ∗i1)|−1/2 exp(−1

2
x′c,1Vc,1(δ∗i1)−1xc,1)

|Vc,1(δi1)|−1/2 exp(−1
2
x′c,1Vc,1(δi1)−1xc,1)

, 1

}
,

where δi1 (without asterisk) is the previous draw in the Markov chain and xc,1 denotes

the cycle components in x1, i.e. xc,1 = (c1, ..., c2−p)
′.

Secondly, defining ỹi,t = τ ∗i,t − δi,1τ1,t − ... − δi,i−1τi−1,t − δi,i+1τi+1,t − ... − δi,N+1c1,t −
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...− δi,KcN,t, the proposed transformation

τ ∗i,t =δi,1τ1,t + ...+ δi,i−1τi−1,t + δi,i+1τi+1,t + ...+ δi,NτN,t

+ δi,N+1c1,t + ...+ δi,N+iy
∗
i,t + ...+ δi,KcN,t + (δi,N+i − 1)ei,t−1,

becomes

ỹi,t = δi,N+1y
∗
i,t + (δi,N+i − 1)ei,t−1.

Ignoring initialisation, the conditional posterior follows

p(δi,N+1|.) ∝ (δi,N+1 − 1)−T+1 exp

(
−1

2

T∑
t=2

(ỹi,t − δi,N+iy
∗
i,t)

2

(δi,N+i − 1)2σ2
i,st−1

ωi,st−1

− 1

2

δ2
i,N+i

γN+i

)
. (3)

This non-standard univariate distribution can be well-approximated by a Student’s t-

proposal with mean µδi2 and scale parameter Ψδ
i2 equal to the mode and curvature around

the mode of the above density function.1 That is, we apply Newton’s method

δ
(n+1)
i,N+i = δ

(n)
i,N+i −

p′(δ
(n)
i,N+i|.)

p′′(δ
(n)
i,N+i|.)

to find the mode iteratively, with δ
(1)
i,N+i = Cov(ỹi,t, y

∗
i,t)/Var(y∗i,t) and

p′(δi,N+i|.) = −(T − 1)
1

δi,N+i − 1
+ (δi,N+i − 1)−3

T∑
t=2

(ỹi,t − δi,N+1y
∗
i,t)

2

σ2
i,st−1

ωi,st−1

+ (δi,N+i − 1)−2

T∑
t=2

(ỹi,t − δi,N+1y
∗
i,t)y

∗
i,t

σ2
i,st−1

ωi,st−1

− 1

γN+i

δi,N+i,

p′′(δi,N+i|.) = (T − 1)(δi,N+i − 1)−2 − 3(δi,N+i − 1)−4

T∑
t=2

(ỹi,t − δi,N+1y
∗
i,t)

2

σ2
i,st−1

ωi,st−1

− 4(δi,N+i − 1)−3

T∑
t=2

(ỹi,t − δi,N+1y
∗
i,t)y

∗
i,t

σ2
i,st−1

ωi,st−1

− 1

γN+i

,

until some convergence criterion is met. Let µδi2 denote the mode and define Ψδ
i2 =

−1/p′′(µδi2|.). A new draw δ∗i,N+i is generated from a Student’ t-distribution T (µδi2,Ψ
δ
i2, ν),

1More efficient proposals such as a mixture of Student’s t-distributions can be easily constructed
(Basturk et al., 2017) due to the fact that we deal with a univariate distribution. We find that a simple
Student’s t-proposal suffices.
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with the degrees of freedom ν arbitrarily chosen. The draw is accepted with probability

min

{
|Vc,1(δ∗i,N+i)|−1/2 exp

(
−1

2
x′c,1Vc,1(δ∗i,N+i)

−1xc,1
)
p(δ∗i,N+i|.)T (δi,N+i;µ

δ
i2,Ψ

δ
i2, ν)

|Vc,1(δi,N+i)|−1/2 exp
(
−1

2
x′c,1Vc,1(δi,N+i)−1xc,1

)
p(δi,N+i|.)T (δ∗i,N+i;µ

δ
i2,Ψ

δ
i2, ν)

, 1

}
,

where p(δi,N+i|.) is the density kernel in (3) and T (δi,N+i;µ
δ
i2,Ψ

δ
i2, ν) is the density of

constructed Student’s t-proposal evaluated at δi,N+i. Once δi,j and δi,N+i are generated,

Ai− is computed using

δi,j = − Aij
1− Ai(N+i)

= −Aij(1− δi,N+i), j ∈ {1, ..., i− 1, i+ 1, ..., K},

as given in the main text.

Sampling Φ, σ2
i,1, ωi,2, P, γΦ and γi.

We sample Φ independently equation-by-equation. Based on B = A−1Φ(Lp), we notice

that only the sampling of Φcc is needed (i.e., the autoregressive coefficient matrix for the

VAR(p) cycles). Using

Aẋt+1 = Φxt + et, ẋt+1 = (τ ′t+1, c
′
t+1)′, (4)

standard Bayesian calculation shows that posterior draws of Φ′i− can be generated from

N(Ai−µ
Φ
i ,Ψ

Φ
i )1{||B∗

c ||<1}, where

ΨΦ
i =

(
T−1∑
t=1

x′tΣ
−1
st xt +

1

γΦ

L−1

)−1

,

µΦ
i = ΨΦ

i

(
T−1∑
t=1

x′tΣ
−1
st ẋt+1 +

1

γΦ

L−1W

)
,

and ||B∗c || denotes the largest eigenvalue in absolute value of B∗c so that the indicator

function 1{||B∗
c ||<1} guarantees that the VAR(p) cycles are stationary. Taking initialisation

into account, the draw is accepted with probability

min

{
|Vc,1(Φ∗i−)|−1/2 exp(−1

2
x′c,1Vc,1(Φ∗i−)−1xc,1)

|Vc,1(Φi−)|−1/2 exp(−1
2
x′c,1Vc,1(Φi−)−1xc,1)

, 1

}
.
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For i = 1, ..., K, the volatility parameter σ2
i,1 can be sampled from

IG

(
αv +

T

2
, βv +

T−1∑
t=1

(Ai−ẋt+1 − Φi−xt)
2

2ωi,st

)

and the variance ratio ωi,2 can be sampled from

IG

(
αω +

T2

2
, βω +

∑
t∈T2

(Ai−ẋt+1 − Φi−xt)
2

2σ2
i,st

)
.

These draws are accepted with probability

min

{
|Vc,1(σ2∗

i,1ω
∗
i,j)|−1/2 exp(−1

2
x′c,1Vc,1(σ2∗

i,1ω
∗
i,j)
−1xc,1)

|Vc,1(σ2
i,1ωi,j)|−1/2 exp(−1

2
x′c,1Vc,1(σ2

i,1ωi,j)
−1xc,1)

, 1

}
, j = 1, 2.

The posterior draws of transition probability are sampled via a 2-dimensional Dirichlet

distribution. Specifically, we draw P′1− and P′2− from

Dir2(e1+
T∑
t=2

1{st−1=1,st=1}, e2+
T∑
t=2

1{st−1=1,st=2}), Dir2(e2+
T∑
t=2

1{st−1=2,st=1}, e1+
T∑
t=2

1{st−1=2,st=2}),

respectively, where
∑T

t=2 1{st−1=j,st=i} counts the number of transitions from volatility

regime j to i. The new draw is accepted with probability

min

{
|Vc,1(P∗)|−1/2 exp(−1

2
x′c,1Vc,1(P∗)−1xc,1)

|Vc,1(P)|−1/2 exp(−1
2
x′c,1Vc,1(P)−1xc,1)

, 1

}
.

Based on the updated transition probability, the index process of two Markov regimes

ST is sampled using the forward filter and backward simulation smoother of Chib (1996)

with initialisation taken into account. Through et = Aẋt+1−Φxt and et ∼ N(0,Σst), the

algorithm utilises p(ST |e1, ..., eT ) =
∏T

t=1 p(st|YT , st+1, ..., sT , P) and

p(st|YT , st+1, ..., sT , P) ∝ p(st|et)p(st+1|st, P) by a forward recursion that determines

p(st|et) and a backward recursion that draws posterior samples of ST .

Finally, the posterior draws of shrinkage parameters are directly generated from an

inverse gamma distribution due to conjugacy. We draw γΦ from

IG(αγ + K2p
2
, βγ + 1

2

∑K
i=1(Φi− − Ai−W )(Φi− − Ai−W )′) and γi from

IG(αγ + K−1
2
, βγ + 1

2
A′−iA−i) for i = 1, ..., K.
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Sampling σi,t

Under SV, we have Ai−ẋt+1 = Φi−xt + ei,t as in (4) with ei,t ∼ N(0, σ2
i,t) for i = 1, ..., K.

We adopt the method of Kim et al. (1998) using a 7-component Gaussian mixture to

draw from p(log σi,t|{ei,t}T−1
t=1 , ρi, sT ) and p(st|{log σi,t}T−1

t=1 , {ei,t}T−1
t=1 ) iteratively, where

st = {1, ..., 7} here is a tabulated indicator auxiliary process selecting the mixing

component.

5 Robustness check

Table 1 reports the posterior mean estimate of the structural matrix A in the SCUC

model using the data up until the GFC. This serves as a robustness check in order to

corroborate if the inclusion of this recent period introduces any changes in the A matrix.

The results do not suggest significant differences from what is reported in the main text.

This is so because even if the high volatility brought about by the GFC is ignored, the

data still shows two distinct volatility states, namely the high volatility state in the 1980s

and the low volatility state after the “Great Moderation”.
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Table 1: Structural matrix A obtained from the SCUC model for the US
Phillips curve prior to the Great Financial Crisis

Two volatility states Markov regime switching

τ1,t τg,t τ2,t c1,t c2,t

τ1,t 1 0.17
−3.6

−0.04
−8.4

0.46
−24.8

0.10
−4.2

τg,t 0.14
−11.2

1 −0.55
−30.4

0.26
−14.2

−0.22
−17.3

τ2,t 0.09
−3.0

0.27
−18.3

1 −0.38
−12.7

0.22
−15.8

c1,t −0.37
−23.6

−0.22
−19.5

0.25
−31.4

1 −0.61
−28.1

c2,t 0.22
−25.6

−0.01
−0.1

0.09
−4.4

−0.23
−21.0

1

Stochastic volatility

τ1,t 1 0.10
−6.4

−0.06
3.4

0.37
−33.2

0.04
−2.3

τg,t 0.08
−9.2

1 −0.52
−18.2

0.34
−26.9

−0.30
−11.5

τ2,t 0.11
−6.8

0.22
−32.7

1 −0.42
−24.1

0.31
−30.3

c1,t −0.23
−18.2

−0.21
−24.0

0.18
−22.9

1 −0.54
−33.8

c2,t 0.20
−2.3

−0.04
1.1

0.14
−9.2

−0.18
−17.2

1

Reported is the posterior mean estimate of the structural matrix A obtained from the SCUC model,

using data prior to the GFC. Below the posterior mean is the SDDR for testing H0 : Aij = 0, with

boldface numbers indicating strong evidence against H0. The upper panel shows estimates identified

considering the two-volatility-state Markov regime switching, while the bottom panel shows estimates

identified considering stochastic volatility.
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